

Thermal resistance design.

A. Calculation of Rth_(J-A)

1. Rth_(J-S) = 8 $^{\circ}$ C/W for Powerlux 1W LED.

2. $Rth_{(S-B)} = Rth_{(Slug-solder)} + Rth_{(solder-MCPCB)}$

If the thickness of solder is 200um and area is $(6.4/2)^2 \pi$ mm². Thermal conductivity of solder is 20 W/mK.

The Formula of Rth is

Thickness(um) Thermal Conductivity (W/mK) x Area(mm²)

Therefore Rth(slug-solder) = $\frac{200}{20 \text{ X} (6.4/2)^2 \pi} = 0.3 \text{ }^{\circ}\text{C/W}$

 $Rth_{(solder-MCPCB)} = 1.5 \ ^{\circ}C/W$

 $Rth_{(S-B)} = 0.3 \ ^{\circ}C/W + 1.5 \ ^{\circ}C/W = 1.8 \ ^{\circ}C/W$

Please note Powerlux suggest to use solder instead of thermal grease. For thermal grease the thermal conductivity is around 2W/mK, which caused $Rth(slug-solder) = 3 \ ^{\circ}C/W$, and in some case there is bubble inside it which make Rth even higher.

3. Rth_(B-A)

The Rth between board and air is mainly dependent on the total surface area.

Therefore Bth _R	<u>.</u> 500	
	Area (cm2	2)
If Area is 30cm ²	Rth=16.7	Rth _(J-A) =8+1.8+16.7 =26.5 °C/W
If Area is 60cm ²	Rth=8.3	$Rth_{(J-A)} = 8+1.8+8.3 = 18.1 \ ^{o}C/W$
If Area is 90cm ²	Rth=5.5	Rth _(J-A) =8+1.8+5.5 =15.3 °C/W

Therefore, to increase heat sink surface will reduce Rth.

B. Calculation of Junction Temperature.

The total power dissipated by the LED is the product of the forward voltage (V_F) and the forward current (I_F) of the LED.

The temperature of the LED junction is the sum of the ambient temperature and

the product of the thermal resistance from junction to ambient and the power

dissipated. T_{Junction} =T_{Air} + Rth_(J-A) x P_{Dissipation} If one white Powerlux LED in room temperature (25^oC) operated 350mA and V_F=3.3V,

the $P_{Dissipation}=0.35 \times 3.3=1.155W$

And junction temperature is

 $T_{Junction} = 25^{\circ}C + 15.3 \times 1.155 = 42.67^{\circ}C$ (total surface area =90cm²)

 $T_{Junction} = 25^{\circ}C + 18.1 \times 1.155 = 45.90 \circ C$ (total surface area=60cm²)

 $T_{Junction} = 25^{\circ}C + 26.5 \times 1.155 = 55.61 \ ^{\circ}C$ (total surface area =30cm²)

Please note Junction temperature will impact LED life, we strongly recommend to keep the junction temperature as low as possible!